
ARTICLE

Stability of person-specific blood-based infrared
molecular fingerprints opens up prospects for
health monitoring
Marinus Huber 1,2✉, Kosmas V. Kepesidis1, Liudmila Voronina 1,2, Maša Božić1, Michael Trubetskov 2,

Nadia Harbeck3, Ferenc Krausz1,2,4 & Mihaela Žigman 1,2,4✉

Health state transitions are reflected in characteristic changes in the molecular composition

of biofluids. Detecting these changes in parallel, across a broad spectrum of molecular

species, could contribute to the detection of abnormal physiologies. Fingerprinting of biofluids

by infrared vibrational spectroscopy offers that capacity. Whether its potential for health

monitoring can indeed be exploited critically depends on how stable infrared molecular

fingerprints (IMFs) of individuals prove to be over time. Here we report a proof-of-concept

study that addresses this question. Using Fourier-transform infrared spectroscopy, we have

fingerprinted blood serum and plasma samples from 31 healthy, non-symptomatic individuals,

who were sampled up to 13 times over a period of 7 weeks and again after 6 months. The

measurements were performed directly on liquid serum and plasma samples, yielding a time-

and cost-effective workflow and a high degree of reproducibility. The resulting IMFs were

found to be highly stable over clinically relevant time scales. Single measurements yielded a

multiplicity of person-specific spectral markers, allowing individual molecular phenotypes to

be detected and followed over time. This previously unknown temporal stability of individual

biochemical fingerprints forms the basis for future applications of blood-based infrared

spectral fingerprinting as a multiomics-based mode of health monitoring.
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Probing of systemic human biofluids such as blood serum
and plasma offers a potential means of monitoring the
health status of individuals1,2. Molecular fingerprinting of

blood-based biopsies via infrared vibrational spectroscopy3–6

constitutes one possible way of realizing this potential. However,
whether or not infrared molecular fingerprints (IMFs) are suffi-
ciently stable over time to allow for health monitoring has not yet
been assessed, nor have standard ranges for IMFs of healthy
populations been determined. Human blood composition is
influenced not only by a multitude of physiological states, but also
by genotypic variation, lifestyle, age, environmental factors,
nutritional status, drug consumption, and even metabolites pro-
duced by the symbiotic microflora7–10. Hence, any liquid-biopsy-
based approach to health state monitoring must take natural
biological variability, and the reference ranges for parameters that
are sensitive to the physiological state of the organism, into
account2,8–10. These parameters can be either individual analytes
or specific features in a spectral fingerprint. The aim of this study
is to evaluate the stability of IMFs and their spectral markers over
time and provide a general understanding of the range of blood-
based biological variability across molecular species, which is a
vital prerequisite for any future application of molecular finger-
printing in health monitoring or disease detection.

Analytical “omics” approaches for molecular profiling, such as
mass spectrometry (MS), nuclear magnetic resonance (NMR)
spectroscopy, or DNA/RNA-sequencing methods, have led to the
discovery of numerous blood-based biomarkers as candidates for
disease detection and treatment monitoring1,11–18. Although
sensitive and specific, most of these techniques focus on a single
molecular group in a given context: i.e., they measure either
proteins12, or small molecule metabolites13, or lipids14, or
DNA15, or RNA16. However, probing of different molecular
classes in parallel (“multiomics”) may better capture patterns of
characteristic molecular changes and thus allow one to define
significant pathophysiological transitions1,17,18. Infrared vibra-
tional spectroscopy3–6 probes vibrations of the structural back-
bones of all molecular species in a sample. The frequencies of
those vibrations depend on the atomic composition, structure,
and strength of the chemical bonds in the molecules. Thus,
infrared spectroscopy has the inherent advantage of being sen-
sitive to all functional groups in organic samples5,6. Unfortu-
nately, spectral overlap of molecular responses and limited
sensitivity of commercially available infrared spectrometers
allows vibrational spectroscopy to quantify only the most abun-
dant substances of highly complex bioliquids so far19,20. However,
new spectroscopic schemes allow to overcome current limitations
in sensitivity and have the potential to significantly increase the
range of detectable molecular concentrations21,22.

When applied to liquid biopsies, vibrational spectroscopy
provides an IMF, which is potentially specific for a molecular
blood phenotype and can therefore serve as a marker for an
individual’s state of health. Fourier-transform infrared (FTIR)
spectroscopy has demonstrated the potential of spectral finger-
prints for disease diagnostics (e.g., Alzheimer’s disease23–25,
prostate26, lung27, breast28, liver29, and brain cancers30) as well as
for tracing the evolution of metabolic changes under exercise-
induced conditions in athletes (sports medicine)31–33. FTIR
spectroscopy of biofluids also has been used for disease mon-
itoring in animal models34,35 and blood biopsies from
patients36,37. However, to the best of our knowledge, no attempts
have yet been made to assess the stability of IMFs of a healthy,
non-symptomatic human population over time. Thus, the inevi-
table biological variability of human biopsies relevant to any
health monitoring approach remains unexplored.

This study addresses questions that are fundamental for the
applicability of infrared fingerprinting in health monitoring: First,

we test whether infrared spectral fingerprints can be reproducibly
and directly obtained from bulk liquid blood serum and plasma
samples, and we determine the range of natural biological var-
iation of IMFs from individual volunteers over time (within-
person variation). Second, we quantitatively relate the variation of
the IMFs over time for any given individual to the degree of
variability between different individuals (between-person varia-
tion) and to operational variabilities inherent to clinical practice.
We address these questions in a prototypical human clinical study
cohort, quantify the analytical measurement error, and relate this
to the variation between four different clinical centers (inter-
clinical variability). Our study provides evidence for the existence
of detectable person-specific IMFs of liquid-phase human blood
samples. This lays the foundations for IMF as a promising dis-
criminative and non-invasive method for health monitoring in
the future.

Results
To assess whether infrared vibrational spectra obtained from
human blood in the liquid phase have properties that permit its
use for health monitoring, we systematically quantify the within-
person and the between-person variabilities of IMFs and relate
these to the analytical and the clinical error. To this end, we
analyzed prospectively collected samples of blood serum and
blood plasma from 31 healthy, non-symptomatic human indivi-
duals. A detailed breakdown of the study participants is given in
Supplementary Table 1. Blood was drawn from each individual in
the cohort on 13 different days over a period of 7 weeks (once
every 3–4 days), and once or twice after 6 months (Fig. 1a and
Supplementary Table 2). In addition, the influence of measure-
ment variability as well as blood collection and sample-handling
processes were characterized. This combined error was evaluated
in a separate study by comparing blood samples obtained at four
different clinics from five individuals within <4 h. Well-defined
standardized protocols for blood drawing, sample processing, and
sample storage, applicable to routine medical practice were used
throughout the study. This allowed us to evaluate variability
caused by variations in blood drawing and sample processing, as
well as short-term changes in blood composition38. The chosen
study design represents a typical prospective longitudinal clinical
study setting for health monitoring.

Infrared molecular fingerprints of liquid blood plasma and
serum. We measured the infrared absorption spectra of blood
serum and plasma samples with an automated FTIR device.
Serum and plasma were transilluminated as native liquids in a
thin flow-through cuvette (~8 µm path length) to mitigate the
effects of strong absorption by water (see also Supplementary
Figure 1). A measurement of a single sample took <5 min. In
comparison with measurements of dried serum/plasma, this
approach avoids major sample preparation steps and artefacts
(e.g., the coffee-ring effect4,39) and preserves the native secondary
protein structure, altogether increasing the reproducibility of the
measurements as previously shown40. With this approach, we can
record IMFs in a time- and cost-effective manner, with minimal
sample preparation. The IMFs obtained covered the spectral
range between 950 and 3000 cm−1, which includes absorption
bands characteristic for proteins (amide I/II, predominantly
at 1548 cm−1 and 1654 cm−1), carbohydrates (mainly between
1000 and 1200 cm−1), and lipids (1741 cm−1, 2854 cm−1, and
2929 cm−1) (Fig. 1b).

There was an overall resemblance between the infrared spectra
obtained from all study participants (Fig. 1b). The IMFs of blood
plasma and serum are similar in overall shape, featuring the same
characteristic absorption bands. This is not surprising, since
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plasma and serum share the vast majority of their molecular
components. We find that the major difference between serum
and plasma spectra is attributable to the ethylenediaminetetraa-
cetic acid, which is added during plasma preparation and whose
spectral features were readily recognizable (Supplementary
Figure 2).

Spectrally resolved variability of IMFs. First, we determined the
impact of natural biological variation on the acquired IMFs. To
assess this variation quantitatively, we evaluated the magnitude of
the time-dependent change (day-to-day and month-to-month) in
the IMF of every single individuum in our study cohort (within-
person variability) and the spread among individuals within the
same population (between-person variability). Second, we com-
pared them with variations arising from (minor) differences in
blood collection and sample-handling processes (inter-clinical
error) and to the evaluated error of the spectroscopic
measurement.

Unprocessed infrared absorption spectra and their standard
deviation owing to the variabilities caused by the above-
mentioned effects show a similar dependence on wavenumber
(Fig. 2a). This suggests that the variation of IMFs is dominated by
differences in the total amount of molecules in the samples (e.g.,
owing to disparities in details of collection, handling, and
processing) rather than by changes in their relative molecular
composition. These uncertainties can be substantially reduced by
additional spectral pre-processing, in particular by normalization
of the measured IR spectra41 (see Methods for details). When
applied, this step reduces the relative inter-clinical variability and
the relative measurement error to <1% and 0.1%, respectively, in
most spectral ranges (Fig. 2b). Overall, the reproducibility of the
measurements achieved here is better than what was previously
shown with liquid or dried serum or plasma40,42. We, therefore,
use pre-processed spectra for all further analyses.

Removing variations in overall biomolecular content brings to
light the fact that within-person variation of molecular composi-
tion is much smaller than its spread across the cohort of healthy,
non-symptomatic individuals, and that the inter-clinical variation
is significantly lower than any of these biological variabilities in
most of the spectral regions. We found only a few spectral regions
in which the inter-clinical variability and within-person varia-
bility are comparable (Fig. 2b), and should thus be considered
carefully when included further for analysis. Although the inter-
clinical variability may be further reduced by improved protocols
for sample collection, the spectral variability is already on a level,

which allows characterization of the change of a person’s
molecular IR fingerprint over time.

Comparison of biological variability in blood serum and
plasma. To evaluate whether blood serum or blood plasma might
be better suited for IMF-based clinical diagnostics, we compared
the magnitude of biological variability in the two bioliquids after
pre-processing their measured infrared absorption spectra.
Spectrally resolved variability was averaged over the whole
spectrum and the within-person variability for each person was
evaluated individually. Although levels of between-person and
inter-clinical variability were approximately the same for serum
and plasma, the within-person variability of plasma was, on
average, 24% higher than for serum samples (with a statistical
significance of p= 2.7 × 10−4) (Fig. 2c). This shows that IMFs of
plasma samples captures more of the variations in molecular
composition over time than IMFs of serum samples do.
Depending on whether this additional biological information is
desired for the envisioned monitoring or diagnostic application,
the use of one or the other medium may be preferable.

Within-person and between-person variability of spectral
markers. Measuring the dependence of the precise abundance of
a single analyte on physiological conditions in humans (e.g., given
protein in states A, B, C) is known to be notoriously challenging.
It is even more difficult to quantify concurrent changes in the
abundance of many different substances belonging to distinct
molecular classes (e.g., lipids and proteins) in a single experiment.
Owing to its cross-molecular coverage, broadband infrared
spectroscopy is able to make a valuable contribution here. Rela-
tive concentration changes of different molecular classes, in
comparison with each other, can be estimated from the relative
change in the ratio of the intensity of absorption bands, which are
dominated by specific molecular classes and can therefore be
assigned to them23,34,35,37,43–53. Table 1 shows a selection of peak
ratios (together with their respective assignments) previously
proposed as markers for physiological states, disease diagnostics,
and monitoring.

We analyzed the within- and between-person variability of
these ratios and evaluated their Index of Individuality (II), which
is defined as the ratio of the average within-person variability SW
and between-person variability SB9,10:

II ¼ SW=SB ð1Þ
When a molecular marker has an II < 0.6, it is considered to be
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Fig. 1 Study setup and overview. a Experimental setup used for profiling of FTIR blood serum and plasma drawn from 31 healthy, non-symptomatic
volunteers at up to 15 consecutive time points over the course of >6 months (see also Supplementary Table 2 for detailed information about the sampling
time points). Same individuals are indicated as different shades of the same colors. b Unprocessed infrared absorption spectra of liquid blood sera (yellow)
and plasma samples (red) measured from all individuals enrolled in the study. Inset: Close-up showing 636 individual traces of 318 measurements of blood
sera and plasma each. Absorption peaks are associated with major molecular vibrations: ν stretching, δ bending, s symmetric, and as asymmetric vibrations.
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specific to an individual9 and can in principle be used to track the
physiological state of an individual. In the context of disease
detection, a low II also implies that the level of a marker may be
within the normal range for one person, while the same values
might be abnormal for another individual. In case–control
scenarios, this may lead to deviations being erroneously identified
as anomalies, which underlines the importance of quantitatively
evaluating both the within- and between-person variability9,10.

As a case example, the ratio of the intensity of the amide I main
peak to that of its shoulder (I1635/I1654—Fig. 3a) contains
information about the relative amounts of alpha-helix and beta-
sheet structures34,45,54. This parameter was used in classical case-
control studies44,45 as well as for longitudinal disease
monitoring34,35. We found its within-person variation to be up
to five times smaller than the variation between subjects, as
reflected in its low II of 0.23 and 0.27 for serum and plasma,
respectively. The high degree of individuality of this ratio suggests
that it may be most helpful in health monitoring, as IMFs are to
be referenced to those previously acquired from the same
individual.

Generally, we find that intensity ratios of plasma and serum
spectra behave in a similar fashion over time, which emphasizes
the fact that serum and plasma share the vast majority of their

molecular components and therefore provide similar information.
We found that most of the peak ratios are rather stable over time,
whereas for some individuals (e.g., I1635/I1654 of the subject BD,
Fig. 3b, d) we observed a significant change over time. This shows
on the one hand that these spectral markers can be measured
reliably and stably over time, but also that changes of these
markers over time (potentially due to a disease) can be detected.
In general, many peak ratios are found to have a rather low Index
of Individuality (Table 1), which makes their biological variability
comparable to commonly measured clinical variables55. This
connects IMFs to other analytical approaches and highlights its
value as a source of highly specific and individual molecular
information.

Identification of person-specific IMFs in the liquid phase of
human blood. Several spectral features of the IMFs are found to
exhibit a low Index of Individuality, which renders them highly
person-specific. This raises the intriguing question whether IMFs
permit identification of individual molecular phenotypes, despite
the inevitable background of biological variability. Although
NMR and mass-spectroscopic fingerprints of human urine56,
saliva57, blood serum58, and plasma59 were found to possess this
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Table 1 Selected IR peak ratios with their assignments to respective physiological conditions.

Serum Plasma

Peak ratio Value ± S2B II Value ± S2B II Assignment/applications

I1635/I1654 0:756 ±0:012 0.23 0:771±0:012 0.27 Ratio of β-sheet to α-helix secondary structures;34,35,45,49 proposed marker for
colitis;35 determination of albumin-to-globulin ratio;44 indicator of lymphoma and
melanoma in a mouse model45

I1546/I1655 0:635±0:003 0.61 0:638 ±0:003 1.2 Amide I to amide II ratio;37,46,49,51 alternation of secondary structure;46,51

formation of protein fibrils46

I1655/(I1655+I1548) 0:610±0:001 0.63 0:608 ±0:001 1.2 Ratio of α-helix structure to total proteins47

I1684/(I1655+I1548) 0:213 ±0:002 0.48 0:218±0:002 0.69 Ratio of antiparallel β-sheet structure to total proteins47

I1515/(I1655+I1548) 0:174±0:002 0.27 0:175±0:002 0.34 Ratio of tyrosine-rich proteins to total proteins47

I2959/I2931 0:993±0:020 0.52 1:005±0:019 0.50 νas(CH3)-to-νas(CH2) ratio; length of lipid chains;51 correlates with gastric
cancer51

(I2855+I2927)/
(I2962+I2871)

0:952 ±0:023 0.55 0:942 ±0:021 0.52 Elongation of fatty acids;34,46 correlates with breast cancer progression34

(I2851+I2927)/
(I1655+I1548)

0:178±0:007 0.48 0:179±0:007 0.46 Lipid-to-protein ratio47

I1239/(I2851+I2927) 0:424±0:013 0.54 0:422 ±0:011 0.52 Ratio of phospholipids to total lipids47

I1741/I1640 0:029 ±0:003 0.59 0:029 ±0:002 0.57 Lipid-to-protein ratio;52 correlation with apoptotic cells52

I1740/I1400 0:118±0:012 0.59 0:107±0:009 0.59 Lipid-to-protein ratio;37,52 correlation with tumor progression in tissues52

I2852/I1400 0:500±0:018 0.54 0:454±0:014 0.56 Lipid-to-protein ratio37

I1450/I1539 0:287 ±0:003 0.30 0:297 ±0:003 0.34 Lipid-to-protein ratio23

I1240/I1517 0:408±0:004 0.51 0:407 ±0:004 0.57 Degree of phosphorylation of tyrosine46

I1045/I1545 0:109±0:003 0.41 0:109±0:003 0.48 Phosphate-to-carbohydrate ratio23

I1080/I1550 0:145±0:004 0.40 0:143 ±0:004 0.44 Phosphate-to-amide II ratio37,49,51

I1060/I1230 0:705±0:013 0.43 0:697 ±0:012 0.55 νs(PO�
2 )-to-νas(PO

�
2 ) ratio

23

I1170/I1080 0:905 ±0:017 0.50 0:918 ±0:016 0.54 Relative content of nucleic acids; distinguishes sera of lung cancer patients from
those of healthy individuals49

I1030/I1080 0:626 ±0:006 0.81 0:636 ±0:005 1.01 Glycogen/phosphate ratio; indicator of metabolic turnover in cells43,48,53

I1080/I1243 0:726 ±0:014 0.46 0:717±0:013 0.56 νs(PO�
2 )-to-νas(PO

�
2 ) ratio

49

I1587/(I1655+I1548) 0:145±0:002 0.45 0:178±0:002 0.56 Ratio of free amino acids to proteins47
I1156/I1171 0:894 ±0:007 0.45 0:898 ±0:006 0.49 Change of carbohydrate moieties in plasma globulins; correlates with Alzheimer’s

disease50

I1243/I1314 0:856 ±0:013 0.41 0:802 ±0:013 0.56 Reflects changes in protein and nucleic acid levels51

I1453/I1400 0:801±0:006 0.43 0:737±0:007 0.61 δasðCH3Þ-to-δsðCH3Þ ratio51

S2B between-person variability, II index of Individuality, ν stretching, δ bending, s symmetric, as asymmetric vibrations.
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NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21668-5 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1511 | https://doi.org/10.1038/s41467-021-21668-5 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


capability, analogous evidence for infrared fingerprints of human
biofluids is lacking. To assess the existence of highly personalized
IMFs, we examined the IMFs from participants who all provided
blood samples at least eight times within the first 7 weeks of the
sampling period in more detail (Supplementary Table 2). Using a
descriptive investigation—with principal component analysis
(PCA) of all 293 IMFs (for serum and plasma each) of the 27
individuals—we found that the infrared spectra of certain subjects
can be readily distinguished, whereas others overlap significantly
(Fig. 4c). The separation can be improved when higher principal
components (PCs) are included in the analysis; however, perfect
separation of all cases was not attained. Although PCs depict the
maximum variance, these are not necessarily the “directions” in
multi-dimensional space of IMF spectral amplitudes that max-
imize the inter-group separation56.

Applying a random-forest machine-learning algorithm60

(similar results can be also obtained with k-nearest neighbors61

and XGBoost62, Supplementary Figure 3 and Methods), we
performed predictive analysis to derive classification models. The
data for the first N blood samples (for N= 1… 8) per individual
were used for training, and these classifiers were then tested on
the data obtained from the following blood draw, N+ 1 (Fig. 4a).
The accuracy of the prediction is shown in Fig. 4c. If the classifier
were predicting randomly, the accuracy would be 3.7%, as data
from 27 participants were used in the training step. We show that
training the algorithm with data from seven blood draws each,
results in a prediction accuracy of >96%. Figure 4d, e shows the

result of a prediction-error analysis of a random-forest-based
classification model for all individuals when seven blood draws
per participant were used for training and one for testing, and
when the data were subjected to eightfold cross-validation
(repeated eight times with different combinations of training/
test sets).

We observe that the vast majority of predictions lie on the
diagonal of the confusion matrix (Fig. 4d, e), which demonstrates
that the classifier is highly accurate, independently of the selection
of the training set. This suggests the existence of highly person-
specific IMFs that reflect the molecular phenotypes of individual
donors, which are highly stable and reproducible over several
independent blood draws (at least over 6 weeks). Investigation of
the features that primarily contribute to successful classification
revealed that the peaks that exhibit high-levels of between-person
variation (e.g., 1747 cm−1, 2854 cm−1, 2929 cm−1—mostly lipid
absorption) most extensively contributed to the uniqueness of a
person-specific IR fingerprints (Supplementary Figure 4).

In addition, we tested the possibility of deriving a multiclass
classification model based on the intensity ratios (Table 1), again
by using the random forests algorithm. We found that the average
accuracy of the classifiers was 85% for serum and 75% for plasma.
The full list of results—for both training and test sets—is
provided in Supplementary Table 4. This outcome implies that
intensity ratios capture a large fraction—but not all—of the
relevant information contained in the spectra, thus highlighting
the need for broadband infrared coverage. Notably, intensity
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ratios ranked as highly important by this independent classifier
coincide with those having a low Index of Individuality
(Supplementary Table 3). It should also be noted that a fraction
of these intensity ratios can be categorized as redundant, as many
of them are highly correlated with others and thus provide no
significant information gains (Supplementary Tables 5 and 6)—in
contrast to the PCs which are by definition uncorrelated.

Testing the long-term stability of infrared fingerprints. Finally,
we investigated the stability of IMFs on medically relevant
timescales. Here, the prediction accuracy of sera and plasma
sampled 6 months after the initial training sampling period was
evaluated. Most of the individuals were still classified correctly.
The number of misclassifications increased after 6 months,
reducing the identification accuracy to ~80% (Fig. 4f, g). Con-
sidering the fact that part of the misclassification may have been
caused by changes in the overall physiological states (e.g., lifestyle,
new drug intake) of some of the subjects, which have not been
investigated for this study, the overall chemical composition of
human blood is remarkably stable even over a half a year. This
finding emphasizes the method’s suitability for health
monitoring.

Discussion
This proof-of-concept study demonstrates that (1) IMFs are
robustly and directly measurable in liquid blood samples in a
time- and cost-effective manner, (2) a single vibrational spec-
troscopic measurement provides access to multiple person-
specific markers, and (3) infrared molecular phenotypes can be
captured and monitored over time. Taken together, these findings
suggest the possible applicability of blood-based infrared spectral
fingerprinting for clinical health monitoring.

Routine blood profiling often focuses on the detection of
defined analytes (e.g., molecule- or gene-based). However,
broadband vibrational spectroscopy has the capacity to capture
signals from all classes of biomolecular species. Thus, changes in
any types of biomolecules, metabolic reaction products, or
enzyme activities in human blood (e.g., elicited by a transition in
health status) may lead to a change in the molecular phenotype of
blood that may be reflected in the individual’s IMFs. If so, regular,
repeated sampling should enable any “abnormal” deviation in a
molecular phenotype to be effectively detected by comparisons
with previously recorded IMFs obtained from the same subject
(self-referencing). In addition, any infrared measurement could
represent a useful extension to current blood-based analytics, and
could be followed up by well-established analytical approaches for
deeper understanding. However, for the role proposed for IMFs
in heath monitoring here, it is not necessary to understand the
molecular origins of changes in IMFs, as long the characteristic
deviation is specific and significant enough relative to its natural
biological variability.

Although FTIR technology has been employed for case–control
studies using dried serum and plasma samples23–30, its applic-
ability for human health monitoring has not been previously
evaluated. Here, we applied FTIR to native liquid samples in a
longitudinal study setting, and followed healthy, non-
symptomatic individuals in order to quantitatively evaluate var-
iations in the IMFs over time. We have shown that well-defined
blood collection and processing workflows yield IMFs with a high
degree of reproducibility, which allows cross-comparability across
different clinical sites. Importantly, we find that the relative
variations detected in IMFs are comparable to the variability of
molecular concentrations measured with conventional analytical
methods63. Furthermore, we demonstrate that many infrared
spectral markers exhibit Indices of Individuality lower than 0.6,

placing them within the range of variability typically found for
blood analytes routinely used in diagnostic medical laboratory
facilities55. This demonstrates the ability of infrared fingerprint-
ing to obtain highly person-specific information. More generally,
our findings lay the foundation for a robust assessment of the
existence of disease-specific infrared spectral features for health
monitoring and disease detection.

Sampling individuals repeatedly over time, as we did here, can
greatly enhance the capacity of infrared phenotypes to identify
relevant information by eliminating the influence of day-to-day,
within-person biological variability. In addition, any molecular
phenotype may be more accurately detected in the context of
longitudinal studies with self-referencing2. Such an approach will
also eliminate the major source of “biological noise”, namely
between-person variability. This might be especially useful for
diseases with the highest mortality rates (e.g., cancer, cardiovas-
cular conditions), which often develop over the course of years or
even decades, and where self-referencing based on IMFs could be
particularly valuable. However, the answer to the question whe-
ther particular infrared spectral changes can be definitively linked
to the onset or progression of a given disease is beyond the scope
of the current work. For this purpose, sufficiently large cohort
strata combined with clinical information are needed.

The data reported here show that the infrared molecular
phenotype of an individual can be effectively followed over time.
This is an essential prerequisite for future health monitoring and
detection of medical phenotypes by infrared broadband vibra-
tional spectroscopy, circumventing the need for any a priori
knowledge about the molecular identity or causal origin of
deviations from the normal physiological range.

Methods
Enrollment of study participants and blood sampling. The study was reviewed
and approved by “Ethikkommission bei der LMU München” (EK 20170820—Nr.:
17-532), and was conducted according to Good Clinical Practice (ICH-GCP), the
principles of the Declaration of Helsinki, and all applicable legislations and reg-
ulations. Informed consent was obtained from all participants prior to blood
collection.

Prior to the study, a statistical power calculation was performed to determine
the sample size required to assess the mean and variance of the IMFs within a
certain bound on accuracy, assuming a normal distribution. For the determination
of the mean value of IMFs over all individuals at each wavenumber, a bound on
accuracy of 0.025 mOD/µm with 95% confidence was set, resulting in a required
minimum sample size of 26 individuals. The actual precision for the estimation of
the mean is much higher than the stated limit, as several measurements per person
were made and used for the analysis of the mean. For the estimation of the
variabilities (between-person and within-person variability) we assumed that 26
persons donated 10 times. Thus, corresponding variabilities can be estimated
within 35% of their true values and this can be achieved with a 95% confidence. To
account for possible drop-outs over the course of the study, >30 individuals (31
individuals in total) were recruited.

Before each blood withdrawal, the participants were questioned about their
health status and previous meals. Thirty-one adults were recruited for the
longitudinal study and fasting blood samples were collected at the same site
throughout the study. Within the first 7 weeks of the study, blood was sampled
every 3–4 days. After 6 months, each participant again gave their blood two more
times. Thus, each participant provided up to 15 samples over a period of
>6 months (see also Supplementary Table 2). Ages of the participants ranged from
20 to 71 years with a mean of 39.6 years (±14.0 years, STD). 54.5% of the
participants were female. None of the participants had any overt symptoms or
severe diseases. Some of the participants were overweight, had allergies, food
intolerances, or hypertension, which are all typical for a cross-section of the
population at large (see Supplementary Table 1 for detailed information on
subjects).

To evaluate the inter-clinical variability, five individuals volunteered to take part
in an additional separate experiment. They gave blood at four different clinical sites
within 4 h. No food was consumed during this time or within 6 h prior to the first
sampling time.

Standard operating procedures for serum and plasma sample collection,
preparation, and storage. Blood samples were collected, processed, and stored
using defined standard operating procedures. Fasting blood was obtained between
9 am and 2 pm using Safety-Multifly needles of 21 G (Sarstedt), and transferred to
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4.9-ml serum and 4.9-ml plasma Monovettes (Sarstedt). Special care was taken to
make the different blood collections as comparable as possible. This meant that the
same type of cannula was always used, the tubes were always filled to the
recommended maximum filling level, serum was always collected first, and then
plasma. For the blood clotting process to take place, the tubes were stored upright
for at least 20 min and then centrifuged at 2,000 g for 10 min at 20 °C. The
supernatant was carefully aliquoted and frozen at −80 °C within 3 h after
collection.

After all, samples were collected, the aliquots used for the actual FTIR
measurement were prepared. One tube out of each of the smaller tube-sets was
thawed and again centrifuged for 10 min at 2000 g. The supernatant was distributed
into the measurement tubes (50 µl per tube) to be refrozen at −80 °C. All the FTIR
measurements were performed upon two freeze–thaw cycles within the same
measurement campaign.

To measure experimental errors during the experiment, quality-control (QC)
samples from pooled human serum (BioWest, Nuaillé, France) were used64.

FTIR measurements. The samples were measured in random order to reduce
systematic effects. The spectroscopic measurements were performed in liquid phase
with an automated FTIR device (MIRA-Analyzer, micro-biolytics GmbH) with a
flow-through transmission cuvette (CaF2 with ~8 µm path length). The spectra
were acquired with a resolution of 4 cm−1 in a spectral range between 950 cm−1

and 3050 cm−1. Note, that in comparison with measurements of dried serum,
strong water absorption hinders the recording of the spectra over the entire mid-
infrared range spanning from 400 cm−1 to 4000 cm−1 (see Supplementary
Figure 1). After sample exchange, a water reference spectrum was measured to
reconstruct the IR absorption spectra. After every five samples, a QC measurement
was performed. Each measurement sequence usually contained up to 40 samples
resulting in measurement times of up to 3 h. Experiments on QC showed that the
change in IMFs of serum and plasma is negligible for the time span of a regular
measurement sequence.

Pre-processing of infrared absorption spectra. All spectra were grouped
according to the respective measurement day. The measured QC spectra of the
different measurement days were compared with identifying small instrument
drifts, and all the other spectra were corrected accordingly. “Negative” absorption,
which occurs if the hydrated sample contains less water than the reference (pure
water), was corrected for65. It is known from measurements of dried serum or
plasma, that there is no significant absorption in the wavenumber region
1850–2300 cm−1, resulting in a flat absorption baseline. We used this fact as a
criterion for adding to each spectrum a water absorption spectrum taken from
literature66 to account for the missing water in the sample measurement and
minimize the average slope in this region in order to obtain a flat baseline (Sup-
plementary Figure 1). The same wavenumber region was subsequently utilized to
compensate for baseline drifts, and all spectra were truncated to 1000–3000 cm−1.
Finally, all spectra were normalized as vectors, using Euclidean (or L2) norm. To
avoid y axis scale change caused by Euclidean normalization, we computed average
differences between maximum and minimum values of all spectra before nor-
malization and then rescaled all normalized spectra to restore this averaged dif-
ference. This allowed us to preserve the average swing of the spectra and to
correctly compare the variabilities of the pre-processed spectra.

Evaluation of between- and within-person variability. To obtain the within-
person variability, we calculated the standard deviation of the participants’ spectra
over time and used all individual standard deviations to calculate the mean of the
within-person variability. Between-person variability was obtained by averaging all
spectra of a given individual and then calculating the standard deviation of these
averaged spectra from different individuals. The inter-clinical variability was cal-
culated in a similar manner from blood samples collected at different clinical sites
and with standard deviations averaged to obtain the mean inter-clinical variation.
The analytical error was estimated by repeatedly measuring quality-control serum
samples and calculating the reproducibility of the obtained infrared spectra.

Machine-learning analysis and classification. After all samples and subject-
related data were collected, the two following criteria led to the decision of the
subset of 27 individuals to be considered in the machine-learning analysis:

1. Include at least 26 individuals (see also sample size calculation).
2. Include as many donations per individual as possible.

To meet both the above-listed criteria, we included only participants who have
provided blood samples at least eight times within the first 7 weeks of the sampling
period for the analysis of person-specific IMFs.

To reduce the dimension of data sets and explain the variance with a small
number of linearly uncorrelated variables—PCs—we used PCA. When a significant
fraction of the total variance is captured by the first two PCs, the separation
between different classes can be conveniently represented by 2D scatter plots. As
PCA is unsupervised, it is often used as the first analysis applied to a new data set41.

For the derivation of classification models, we used Scikit-Learn67 (v. 0.20.3), an
open-source machine-learning framework in Python (v.3.6.8). We trained various

models based on three algorithms: Random forests60, k-Nearest-Neighbors61, and
XGBoost62. The purpose of classification is to predict and test the identity of
individuals using multiclass classification models. It turned out that a random-
forest-based model (an ensemble of 3160 decision trees) provided the highest
accuracy. The prediction accuracy is defined as the proportion of individuals who
are correctly classified according to the model applied. Information on the optimal
values of model parameters can be found in the SI (caption of Supplementary
Figure 3). The search for the optimal hyperparameters was performed using grid-
search. Performance evaluation was carried out using cross-validation and its
visualization using the notion of the confusion matrix.

Owing to the high dimensionality of the spectral data, and the high degree of
correlation among the original features, the machine-learning algorithms were not
applied directly to original data but rather to features extracted from them. The
following approaches to feature extraction were used:

a. dimensionality reduction using PCA (described above). Thereby, the PCs
transformation was fit on the training set only and used to transform both
training and test set. The minimum number of PCs required to preserve
99.9% of the explained variance was kept.

b. manual extraction of spectral-intensity ratios.

In addition, we have evaluated the relative importance of each feature by
measuring how much the tree nodes that use a particular feature reduce the average
impurity (Gini impurity68) across all trees in the ensemble. This quantity is known
as the Gini importance69,70. Gini importance is a way to measure the relative
importance of each feature (in this case, wavenumbers) with a model build using
the random-forest algorithm. Intuitively, it measures how much the tree nodes,
across all trees of a random forest, reduce class impurity on average. By average, it
is meant a weighted average, where each node’s weight is equal to the number of
training examples that are associated with it.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that the main data supporting the findings of this study are available
within the article and in Supplementary Data 1. Any additional information, data, and
the statistical-analysis code are available upon request.

Code availability
The custom code used for the production of the results presented in this manuscript is
stored in a persistent repository at the Leibniz Supercomputing Center of the Bavarian
Academy of Sciences and Humanities (LRZ), located in Garching, Germany. The code
can be only shared upon reasonable request, as its correct use depends on the settings of
the experimental setup and the measuring device and should therefore be clarified with
the authors.

Received: 28 January 2020; Accepted: 3 February 2021;

References
1. Chen, R. et al. Personal omics profiling reveals dynamic molecular and

medical phenotypes. Cell 148, 1293–1307 (2012).
2. Schüssler-Fiorenza Rose, S. M. et al. A longitudinal big data approach for

precision health. Nat. Med. 25, 792–804 (2019).
3. Bunaciu, A. A., Fleschin, Ş., Hoang, V. D. & Aboul-Enein, H. Y. Vibrational

spectroscopy in body fluids analysis. Crit. Rev. Anal. Chem. 47, 67–75 (2017).
4. Baker, M. J. et al. Developing and understanding biofluid vibrational

spectroscopy: a critical review. Chem. Soc. Rev. 45, 1803–1818 (2016).
5. Lasch, P. & Kneipp, J. Biomedical Vibrational Spectroscopy. (Wiley-

Interscience, 2008).
6. Barth, A. & Haris, P. I. Biological and Biomedical Infrared Spectroscopy. 2 (IOS

press, 2009).
7. Enroth, S., Johansson, Å., Enroth, S. B. & Gyllensten, U. Strong effects of

genetic and lifestyle factors on biomarker variation and use of personalized
cutoffs. Nat. Commun. 5, 4684 (2014).

8. Liu, Y. et al. Quantitative variability of 342 plasma proteins in a human twin
population. Mol. Syst. Biol. 11, 786 (2015).

9. Fraser, G. G. & Harris, E. K. Generation and application of data on biological
variation in clinical chemistry. Crit. Rev. Clin. Lab. Sci. 27, 409–437 (1989).

10. Hawkridge, A. M. & Muddiman, D. C. Mass spectrometry–based biomarker
discovery: toward a global proteome index of individuality. Annu. Rev. Anal.
Chem. 2, 265–277 (2009).

11. Kulasingam, V. & Diamandis, E. P. Strategies for discovering novel cancer
biomarkers through utilization of emerging technologies. Nat. Clin. Pract.
Oncol. 5, 588–599 (2008).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21668-5

8 NATURE COMMUNICATIONS |         (2021) 12:1511 | https://doi.org/10.1038/s41467-021-21668-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


12. Belczacka, I. et al. Proteomics biomarkers for solid tumors: current status and
future prospects. Mass Spectrom. Rev. 38, 49–78 (2019).

13. Zhang, A., Sun, H., Qiu, S. & Wang, X. Metabolomics in noninvasive breast
cancer. Clin. Chim. Acta 424, 3–7 (2013).

14. Qiu, Y. et al. Mass spectrometry-based quantitative metabolomics revealed a
distinct lipid profile in breast cancer patients. Int. J. Mol. Sci. 14, 8047–8061
(2013).

15. Heitzer, E. & Speicher, M. R. One size does not fit all: size-based plasma DNA
diagnostics. Sci. Transl. Med. 10, eaav3873 (2018).

16. Andersen, G. B. & Tost, J. Circulating miRNAs as Biomarker in Cancer. in
Tumor Liquid Biopsies, 277–298 (Springer, 2020).

17. Yoo, B. C., Kim, K.-H., Woo, S. M. & Myung, J. K. Clinical multi-omics
strategies for the effective cancer management. J. Proteom. 188, 97–106
(2018).

18. Zachariou, M., Minadakis, G., Oulas, A., Afxenti, S. & Spyrou, G. M.
Integrating multi-source information on a single network to detect disease-
related clusters of molecular mechanisms. J. Proteom. 188, 15–29 (2018).

19. Perez-Guaita, D., Garrigues, S. & Guardia, De. La, M. Infrared-based
quantification of clinical parameters. TrAC Trends Anal. Chem. 62, 93–105
(2014).

20. Brandstetter, M. et al. Reagent-free monitoring of multiple clinically relevant
parameters in human blood plasma using a mid-infrared quantum cascade
laser based sensor system. Analyst 138, 4022–4028 (2013).

21. Akhgar, C. K. et al. The next generation of IR spectroscopy: EC-QCL-based
mid-IR transmission spectroscopy of proteins with balanced detection. Anal.
Chem. 92, 9901–9907 (2020).

22. Pupeza, I. et al. Field-resolved infrared spectroscopy of biological systems.
Nature 577, 52–59 (2020).

23. Paraskevaidi, M. et al. Differential diagnosis of Alzheimer’s disease using
spectrochemical analysis of blood. Proc. Natl Acad. Sci. 114, E7929–E7938
(2017).

24. Nabers, A. et al. Amyloid-β-secondary structure distribution in cerebrospinal
fluid and blood measured by an immuno-infrared-sensor: a biomarker
candidate for Alzheimer’s disease. Anal. Chem. 88, 2755–2762 (2016).

25. Carmona, P. et al. Discrimination analysis of blood plasma associated with
Alzheimer’s disease using vibrational spectroscopy. J. Alzheimer’s Dis. 34,
911–920 (2013).

26. Krafft, C. et al. A specific spectral signature of serum and plasma-derived
extracellular vesicles for cancer screening. Nanomed. Nanotechnol. Biol. Med.
13, 835–841 (2017).

27. Ollesch, J. et al. An infrared spectroscopic blood test for non-small cell lung
carcinoma and subtyping into pulmonary squamous cell carcinoma or
adenocarcinoma. Biomed. Spectrosc. Imaging 5, 129–144 (2016).

28. Zelig, U. et al. Early detection of breast cancer using total biochemical analysis
of peripheral blood components: a preliminary study. BMC Cancer 15, 408
(2015).

29. Thumanu, K. et al. Diagnosis of liver cancer from blood sera using FTIR
microspectroscopy: a preliminary study. J. Biophotonics 7, 222–231
(2014).

30. Butler, H. J. et al. Development of high-throughput ATR-FTIR technology for
rapid triage of brain cancer. Nat. Commun. 10, 4501 (2019).

31. Petibois, C. & Déléris, G. Analysis and monitoring of oxidative stress in
exercise and training by FTIR spectrometry. Int. J. Sports Physiol. Perform. 3,
119–130 (2008).

32. Petibois, C., Cazorla, G. & Déléris, G. The biological and metabolic
adaptations to 12 months training in elite rowers. Int. J. Sports Med. 24, 36–42
(2003).

33. Déléris, G. & Petibois, C. Applications of FT-IR spectrometry to plasma
contents analysis and monitoring. Vib. Spectrosc. 32, 129–136 (2003).

34. Blat, A. et al. Fourier transform infrared spectroscopic signature of blood
plasma in the progression of breast cancer with simultaneous metastasis to
lungs. J. Biophotonics 12, 1–11 (2019).

35. Ghimire, H., Jayaweera, P. V. V. & Perera, A. G. U. Longitudinal analysis of
molecular alteration in serum samples of dextran sodium sulfate-induced
colitis mice by using infrared spectroscopy. Infrared Phys. Technol. 97, 33–37
(2019).

36. Medipally, D. K. R. et al. Monitoring radiotherapeutic response in prostate
cancer patients using high throughput FTIR spectroscopy of liquid bopsies.
Cancers (Basel) 11, 925 (2019).

37. Sahu, R. K. et al. Continuous monitoring of WBC (biochemistry) in an adult
leukemia patient using advanced FTIR-spectroscopy. Leuk. Res. 30, 687–693
(2006).

38. Lippi, G., Salvagno, G. L., Montagnana, M., Brocco, G. & Guidi, G. C.
Influence of short-term venous stasis on clinical chemistry testing. Clin. Chem.
Lab. Med. 43, 869–875 (2005).

39. Ollesch, J. et al. FTIR spectroscopy of biofluids revisited: an automated
approach to spectral biomarker identification. Analyst 138, 4092 (2013).

40. Fabian, H., Lasch, P. & Naumann, D. Analysis of biofluids in aqueous environment
based on mid-infrared spectroscopy. J. Biomed. Opt. 10, 031103 (2005).

41. Trevisan, J., Angelov, P. P., Carmichael, P. L., Scott, A. D. & Martin, F. L.
Extracting biological information with computational analysis of Fourier-
transform infrared (FTIR) biospectroscopy datasets: current practices to
future perspectives. Analyst 137, 3202 (2012).

42. Lovergne, L. et al. Investigating optimum sample preparation for infrared
spectroscopic serum diagnostics. Anal. Methods 7, 7140–7149 (2015).

43. Movasaghi, Z., Rehman, S. & ur Rehman, D. I. Fourier transform infrared (FTIR)
spectroscopy of biological tissues. Appl. Spectrosc. Rev. 43, 134–179 (2008).

44. Lasch, P., Beekes, M., Fabian, H. & Naumann, D. Antemortem Identification
of Transmissible Spongiform Encephalopathy (TSE) from Serum by Mid-
infrared Spectroscopy. Handbook of Vibrational Spectroscopy, https://doi.org/
10.1002/0470027320.s8925 (2001).

45. Ghimire, H., Venkataramani, M., Bian, Z., Liu, Y. & Perera, A. G. U. ATR-
FTIR spectral discrimination between normal and tumorous mouse models of
lymphoma and melanoma from serum samples. Sci. Rep. 7, 16993 (2017).

46. Staniszewska-Slezak, E. et al. A possible Fourier transform infrared-based
plasma fingerprint of angiotensin-converting enzyme inhibitor-induced
reversal of endothelial dysfunction in diabetic mice. J. Biophotonics 11,
e201700044 (2018).

47. Staniszewska-Slezak, E., Mateuszuk, L., Chlopicki, S., Baranska, M. & Malek,
K. Alterations in plasma biochemical composition in NO deficiency induced
by L-NAME in mice analysed by fourier transform infrared spectroscopy. J.
Biophotonics 9, 1098–1108 (2016).

48. Gazi, E. et al. Applications of Fourier transform infrared microspectroscopy in
studies of benign prostate and prostate cancer. A pilot study. J. Pathol. 201,
99–108 (2003).

49. Wang, X., Shen, X., Sheng, D., Chen, X. & Liu, X. FTIR spectroscopic
comparison of serum from lung cancer patients and healthy persons.
Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 122, 193–197 (2014).

50. Carmona, P., Molina, M., López-Tobar, E. & Toledano, A. Vibrational
spectroscopic analysis of peripheral blood plasma of patients with Alzheimer’s
disease. Anal. Bioanal. Chem. 407, 7747–7756 (2015).

51. Sheng, D. et al. Comparison of serum from gastric cancer patients and from
healthy persons using FTIR spectroscopy. Spectrochim. Acta Part A Mol.
Biomol. Spectrosc. 116, 365–369 (2013).

52. Paraskevaidi, M., Martin-Hirsch, P. L. & Martin, F. L. ATR-FTIR
Spectroscopy Tools for Medical Diagnosis and Disease Investigation.
In Nanotechnology Characterization Tools for Biosensing and Medical
Diagnosis 163–211 (Springer, 2018).

53. Smith, B. R. et al. Combining random forest and 2D correlation analysis to
identify serum spectral signatures for neuro-oncology. Analyst 141,
3668–3678 (2016).

54. Barth, A. & Zscherp, C. What vibrations tell us about proteins. Q. Rev.
Biophys. 35, 369–430 (2002).

55. Lacher, D. A., Hughes, J. P. & Carroll, M. D. Estimate of biological variation of
laboratory analytes based on the third national health and nutrition
examination survey. Clin. Chem. 51, 450–452 (2005).

56. Assfalg, M. et al. Evidence of different metabolic phenotypes in humans. Proc.
Natl Acad. Sci. 105, 1420–1424 (2008).

57. Wallner-Liebmann, S. et al. Individual human metabolic phenotype analyzed
by 1 H NMR of saliva samples. J. Proteome Res. 15, 1787–1793 (2016).

58. Yousri, N. A. et al. Long term conservation of human metabolic phenotypes
and link to heritability. Metabolomics 10, 1005–1017 (2014).

59. Draisma, H. H. M. et al. Hierarchical clustering analysis of blood plasma
lipidomics profiles from mono- and dizygotic twin families. Eur. J. Hum.
Genet. 21, 95–101 (2013).

60. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
61. Altman, N. S. An introduction to kernel and nearest-neighbor nonparametric

regression. Am. Stat. 46, 175–185 (1992).
62. Chen, T. & Guestrin, C. Xgboost: A Scalable Tree Boosting System. In

Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining 785–794 (2016).

63. Ricós, C., Alvarez, V., Cava, F. & García-Lario, J. V. Current databases on
biological variation: pros, cons and progress. Scand. J. Clin. Lab. Invest. 59,
491–500 (1999).

64. Sangster, T., Major, H., Plumb, R., Wilson, A. J. & Wilson, I. D. A pragmatic
and readily implemented quality control strategy for HPLC-MS and GC-MS-
based metabonomic analysis. Analyst 131, 1075 (2006).

65. Yang, H., Yang, S., Kong, J., Dong, A. & Yu, S. Obtaining information about
protein secondary structures in aqueous solution using Fourier transform IR
spectroscopy. Nat. Protoc. 10, 382–396 (2015).

66. Segelstein, D. J. The complex refractive index of water. M.S. Thesis, University
of Missouri (1981).

67. Pedregosa, F., Weiss, R. & Brucher, M. Scikit-learn: machine learning in
Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21668-5 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1511 | https://doi.org/10.1038/s41467-021-21668-5 | www.nature.com/naturecommunications 9

https://doi.org/10.1002/0470027320.s8925
https://doi.org/10.1002/0470027320.s8925
www.nature.com/naturecommunications
www.nature.com/naturecommunications


68. Quinlan, J. R. Induction of decision trees. Mach. Learn. 1, 81–106 (1986).
69. Menze, B. H. et al. A comparison of random forest and its Gini importance

with standard chemometric methods for the feature selection and
classification of spectral data. BMC Bioinformatics 10, 213 (2009).

70. Menze, B. H., Petrich, W. & Hamprecht, F. A. Multivariate feature selection
and hierarchical classification for infrared spectroscopy: serum-based
detection of bovine spongiform encephalopathy. Anal. Bioanal. Chem. 387,
1801–1807 (2007).

Acknowledgements
We thank Jacqueline Hermann, Katja Leitner, Sigrid Auweter, Daniel Meyer, Beate Rank,
and Incinur Zellhuber for their help with this study. In particular, we acknowledge the
efforts of many individuals who participated as volunteers in the clinical study reported
here. We also want to thank Alexander Žigman Kohlmaier and Frank Fleischman for
their feedback on the manuscript.

Author contributions
M.H. and M.Ž. designed the research plan; M.Ž. and F.K. initiated and led the study plan;
N.H. led the clinical study; M.H., M.B., performed the measurements; M.H., K.V.K.,
M.B., L.V., and M.T. analyzed the data; M.H., M.Ž., K.V.K., L.V., and F.K. wrote
the paper.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-21668-5.

Correspondence and requests for materials should be addressed to M.H. or M.Ži.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21668-5

10 NATURE COMMUNICATIONS |         (2021) 12:1511 | https://doi.org/10.1038/s41467-021-21668-5 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-021-21668-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Stability of person-specific blood-based infrared molecular fingerprints opens up prospects for health monitoring
	Results
	Infrared molecular fingerprints of liquid blood plasma and serum
	Spectrally resolved variability of IMFs
	Comparison of biological variability in blood serum and plasma
	Within-person and between-person variability of spectral markers
	Identification of person-specific IMFs in the liquid phase of human blood
	Testing the long-term stability of infrared fingerprints

	Discussion
	Methods
	Enrollment of study participants and blood sampling
	Standard operating procedures for serum and plasma sample collection, preparation, and storage
	FTIR measurements
	Pre-processing of infrared absorption spectra
	Evaluation of between- and within-person variability
	Machine-learning analysis and classification

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




