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ABSTRACT: Molecular fingerprinting via vibrational spectroscopy characterizes
the chemical composition of molecularly complex media which enables the
classification of phenotypes associated with biological systems. However, the
interplay between factors such as biological variability, measurement noise,
chemical complexity, and cohort size makes it challenging to investigate their
impact on how the classification performs. Considering these factors, we developed
an in silico model which generates realistic, but configurable, molecular
fingerprints. Using experimental blood-based infrared spectra from two cancer-
detection applications, we validated the model and subsequently adjusted model
parameters to simulate diverse experimental settings, thereby yielding insights into
the framework of molecular fingerprinting. Intriguingly, the model revealed
substantial improvements in classifying clinically relevant phenotypes when the
biological variability was reduced from a between-person to a within-person level
and when the chemical complexity of the spectra was reduced. These findings
quantitively demonstrate the potential benefits of personalized molecular

fingerprinting and biochemical fractionation for applications in health diagnostics.

In vitro infrared molecular fingerprinting for phenotype detection

(EEXIEEERL]

)
M M

—
In silico modeling & classification analysis via machine learning

False positive rate

2
=
8
S
>
©
L2
=)
ke}
2
=3}

True positive rate

Technical noise

Vibrational spectroscopy by means of Raman or infrared
techniques is a powerful analytical platform capable of
characterizing molecular samples at any state of matter in a label-
free manner.”” Since essentially every molecule exhibits a
unique vibrational spectrum, spectroscopic approaches are able
to quantify individual molecular contributions in complex
matrices.” Although determining changes in the nature and
quantity of individual molecular species is challenged by
overlapping spectral bands, the vibrational spectrum still reflects
the overall molecular composition of a given sample and is
therefore referred to as its “molecular fingerprint”. Statistical or
machine learning methods can identify spectral patterns specific
to molecular phenotypes and consequently classify samples.

Molecular fingerprinting by vibrational spectroscopy has been
increasingly applied to biomedical problems.” The approach has
been used to classify bacteria and cell (sub)types,” distinguish
between benign and malignant tissues,”” and identify diseases
based on fingerprint spectra of biofluids.””

Although successfully applied, the prospects and fundamental
limitations of vibrational fingerprinting for certain applications,
such as for clinically relevant questions, remain largely
unexplored.”” The challenge is that a variety of technical and
data acquisition aspects impact the measured spectra and thus
can affect the classification accuracy.9_11 At the same time, every
living system exhibits an inherent level of biological
variability,''>'? further challenging the unambiguous identi-
fication of different molecular states. While previous work has
examined the variations caused by technical, data acquisition,
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and biological aspects on recorded spectra,'”'"'* disentangling
their individual contribution on the classification accuracy
remains experimentally challenging. This often requires large-
scale studies involving different measurement instruments,
different laboratories, and different protocols for sample
handling, which may be difficult to realize due to resource
limitations."”

Inssilico investigations performed via computer simulations are
particularly powerful in this respect as they can address problems
that are practically or experimentally challenging.'®'” By
creating computational models capable of mimicking the
behavior of biological systems, considering various sources of
noise or heterogeneity, one can rapidly gain insights into the
underlying mechanisms that define the behavior of a system
under differing simulated conditions.'®

To investigate the fundamental capacity of vibrational
fingerprinting, we propose an in silico approach that generates
artificial infrared spectra (Figure 1). Our approach is based on
modeling the molecular composition of a given biological
system in a defined molecular state and transforming this
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Figure 1. Overview of the in silico model and its application to infrared fingerprinting for disease detection. (A) Blood samples are collected from case
and control individuals, and (B) blood-based samples are measured with an infrared spectrometer. Machine learning algorithms are applied to the
spectral data set, and a value of classification accuracy is retrieved. (C) Same problem can be investigated with an in silico model using either a bottom-
up approach based on single component spectra or a descriptive approach based on measured infrared fingerprints of blood-based samples. (D) Within
the frame of the model, the influence of simulated experimental conditions is investigated to gain insight into the effects different simulated conditions
have on the predictive capacity of machine learning models. Based on these findings, (A) initial study design or (B) measurement mode can be adapted

to improve the performance of the envisioned application.

composition into a measurable quantity—the resulting infrared
spectrum. With this model, analytical sources of variation can be
considered to obtain realistic spectra that have comparable
properties to experimental observations. Not only does this
allow for the generation of simulated “measurement events” in
any number, but also enables the precise control of crucial
parameters that may impact the recorded spectra. Our model
provides foundational insights into the factors affecting the
underlying measurement approach—molecular fingerprinting
of complex biological systems—and carries the capacity to guide

future experiments without the need for exhaustive sample
collections and measurements.

The model is described and tested on a previously published
application—infrared fingerprinting of blood sera to detect lung
and prostate cancer.” Our descriptions are kept as general as
possible to facilitate their transferability to other fingerprinting
techniques and applications. Furthermore, we provide a toolbox
(written in Python),"” including the generated data, to allow for
convenient applications of the proposed model. Although
applied here to infrared spectra, the model can be applied to
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other molecular ﬁngerprinting approaches, such as Raman®’ or
nuclear magnetic resonance” spectroscopy.

Altogether, we obtain excellent agreement between the results
of experimental and simulated data. By systematically adjusting
all model parameters, we explored the potentials and limitations
of molecular fingerprinting and thus contribute to accelerating
its real-world applications.

B METHODS

In Silico Model. In essence, the problems tackled by
molecular pattern recognition using machine learning are often
very related. Depending on the application, by detecting changes
in qualitative or quantitative aspects, a distinction between two
or more molecular states is desired. In practice, this distinction is
only possible to a certain extent due to the inherent biological or
sample variability as well as measurement-specific errors.
Additionally, often a limited amount of data is available to
robustly validate conclusions drawn by analyzing differences
between the studied states. Therefore, it can be difficult to make
conclusive statements about the potential and limitations of the
method in question or to isolate the molecular signal of interest.
Even in a scenario where the signal is already known (e.g, the
spectrum of a specific molecule), the expected accuracy of
distinguishing between different states often requires numerous
measurements due to the multiple sources of variation. To
facilitate the investigation of these points, the in silico model
should be able to generate spectra which meet the following
requirements:

o Reflect the biological or sample variability of a given
sample pool.

e Incorporate differences between different molecular
states (e.g., cases and controls).

o Consider characteristics of the physical measurement,
namely the noise introduced by the measurement device.

We describe two approaches to generate the artificial spectra.
In a so-called bottom-up approach, the contribution of
individual molecular species in a given sample is considered.
Although intuitive, this approach cannot be implemented in the
case of infrared spectroscopy of highly complex samples as we
discuss below. Instead, it provides the motivation and basis for
implementing another so-called descriptive approach which
follows a similar mathematical formulation. Although the model
can be applied to study different samples types with varying
chemical complexities and to several molecular fingerprinting
techniques, infrared molecular fingerprints of blood serum will
serve as the guiding principle for assembling the model.

Bottom-Up Approach. It has been shown that by breaking
down a molecularly complex sample into its individual
components, the corresponding infrared spectrum can be
reasonably well approximated with a linear combination of
individual component spectra of the most abundant molecular
species.”” Thereby, each molecular spectrum &; is scaled to its
respective concentration ¢; with Z,A’i 16 * X

This idea can be also utilized to create spectra of a given
population. The normal concentration ranges for the most
abundant blood components in healthy individuals—which in
total make up more than 99% of the molecular mass—can be
obtained from the literature.”*** Using these facts, the
concentration parameter c; could be replaced with a random
variable c(p;, 6;) that models the distribution of each component
for a healthy cohort. Thereby, a set of spectra that model the

molecularly complex samples could be simulated where each
spectrum is modeled as a statistical outcome Y with:

M
Y= cu, o)«
i=1 (1)

We term this model formulation as the bottom-up approach.

It is important to note that the bottom-up approach contains
several simplifications and assumptions. Specifically, it is
assumed that the concentrations of individual molecules or
molecular classes are independent, which is not the case. In
reality, biological networks are interconnected, and molecular
changes within living organisms are occurring in a correlated
fashion.”® In cases where these correlations are well known,
introducing dependencies between the corresponding random
variables would, in principle, account for this behavior.

The assumption that an infrared spectrum of a complex
sample can be described by a linear combination of individual
component spectra scaled to their concentrations can be
regarded as sufficiently fulfilled. Although molecular spectra
are influenced by inter-molecular interactions***” and environ-
mental conditions (e.g, temperature and pH-value), several
studies suggest that complex blood spectra can be described by
linear superposition of individual single component spectra. For
infrared spectroscopy, it is known that the strength of a
molecular spectrum scales linearly with concentration over
many orders of magnitude.””® Furthermore, it has been shown
that the concentration of several different molecules in blood
can be determined by linear regression.””** Moreover, it was
shown that a linear combination of the spectra of the most
abundant molecular species can be used to describe
experimentally observed differences in the spectra of blood
serum from a healthy cohort and from patients with lung
cancer.””

While the bottom-up approach is straightforward to envision,
access to the associated molecular spectra is essential for creating
the model. This is a crucial limitation since, to our knowledge,
there exists no consistent database with infrared spectra of the
majority of molecules contained in complex biological systems.
While previous work suggests that 12 selected protein spectra
can model the shape of blood serum spectra,”” our results show
that significantly more are required to represent the molecular
complexity and biological variability adequately. Taken
together, from the current perspective, it is unlikely that the
bottom-up can be implemented when studying a complex
blood-based matrix. In principle, however, it can be used to
simulate the spectra of simpler systems, such as for
pharmaceutical samples that can be described as a mixture of a
few well-known substances.™

Descriptive Approach. To mitigate the limited access to
individual component infrared spectra, we introduce an
alternative descriptive approach. Here, we use a set of m
experimentally derived spectra s; that describe the samples of a
particular biological matrix (e.g, blood serum of healthy
individuals). By utilizing a random variable (u;, o;) assuming
a Gaussian distribution, the spectrum of a measured biological
matrix can now be expressed as another statistical outcome Y
with:

Y= plu, o),
i=1 ()
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Thereby, the mathematical structure of the formulation is
similar to the bottom-up approach, but utilizing a different set of
calibration vectors to realize the model.

One difference between the two model formulations is that we
cannot rely on the literature to obtain the concentration ranges
for individual molecules and construct a realistic behavior for the
biological variability. Therefore, a calibration procedure is
required to adjust the statistical variables and select the
experimentally derived spectra such that the resulting spectra
reflect the biological variability of the measured samples. In
addition, we must validate that assuming a Gaussian distribution
creates spectral cohorts that adequately match experimentally
measured cohorts.

To calibrate the biological variability, we use a set of
experimentally measured blood serum spectra b; and calculate
the expected value and variance of the descriptive approach:

Y=Y Bu, 0)s.= D pes+ Y, B0, o),

i=1 i=1 i=1 (3)

E(Y) = Z,ui-si

i=1 (4)

Var(Y) = Z 0’;‘2’51‘2
i=1 (%)

Under the condition that the expected value E(Y) should
correspond to the mean of the experimentally measured spectra
b, we can replace the sum of the scaled vectors D uis;ineqs 3
and 4 by b. Additionally, by comparing the variance of eq 5 to the

. 1 = 1
sample variance — Z:yil (b, — b)’, we set o, = N ands;= b, —
o Ldi=

b. With this, the expected value and variance of the generated
spectra become equal to the experimentally determined values.

Since the considered number of measured spectra m may be
smaller than the number of different molecular species M within
the sample, this alternative representation may not be able to
reproduce the complete molecular complexity. However,
considering that we can often use hundreds of measurements
for modeling, this approach should be able to capture variations
related to a similar number of molecular species and thus
asymptotically approximate most of the biological variability.

Incorporating Measurement Errors. In addition to
modeling the biological properties, it is important to factor in
the contributions of noise introduced by the measurement
device to assess its influence on the application of interest.

When using a commercial Fourier-transform infrared (FTIR)
spectrometer, the dominant noise type inherent to the spectral
measurement itself is additive white noise. Such noise can be
added to a modeled spectrum as a vector €:

Y=0b+ i(ﬂ(o, %}(bi - b_)] +e€ ©

To determine a realistic estimate for €, we repeatedly
measured water samples with the FTIR device used for the
blood sera measurements and calculated the standard deviation
observed across the spectral features (Figure S1 in the
Supporting Information). The measurement noise coefficient
€ was thus calibrated to be a random Gaussian vector with a
mean 0 and a spectrally dependent standard deviation.

Other sources of error in infrared spectroscopy which result

from baseline drift® or sample delivery and preparationlo’14 can

also be considered by introducing multiplicative noise and drift
vectors in the model.”® When transferring this model to Raman-
based fingerprinting applications, it may be necessary to
consider further, partly nonlinear noise sources®* to obtain
realistic results. As we show below, for the application of the
model presented in this work, it is sufficient to consider only
additive white noise to obtain realistic results.

Incorporating Differences between Molecular States.
Changes in the physiology of an organism, e.g., due to the onset
of a disease, may change the molecular composition of the
analyzed sample. Thus, we can choose a new set of
experimentally measured spectra b* that characterize the new
molecular state Y* and use that as a basis for calibration. As later
shown, for certain applications, the discriminant features can be
largely explained by a single vector d. By utilizing an additional
Gaussian variable 6(u , 64) which scales the introduced vector d
and accounts for its variability, a modeled spectrum of an
alternative class can be reduced to:

Y* =Y+ 8y, 0y)-d (7)

With this modeling platform, an arbitrary number of samples
can be generated for different molecular states, resulting in a
generated cohort that reflects the statistical properties of the
measured sample pool by, .., b,, and modeled measurement
noise €(0, 6y,0). The statistical quantities # and € can then be

scaled by additional factors to simulate different levels of
variability for these coeflicients in a created cohort of n
measurements. In our application, the molecular outcome Y
represents an artificial measurement of a control sample and Y*
represents an artificial measurement of a cancer case sample.
Unless explicitly stated otherwise, the descriptive approach is
used where independent experimental measurements of cases
and controls form the basis of biological variability calibrations.

Experimental FTIR Spectra and Machine Learning
Analysis. The experimental FTIR spectra used in this study
largely overlap with spectra obtained from a previous study that
involved the detection of lung and prostate cancer from blood
serum.” Newly measured blood sera samples from different
individuals were included in this study to increase the sample
size and thus improve the statistical robustness of the results. All
participants provided written informed consent for the study
under research study protocol #17-141 and under research study
protocol #17-182, both of which were approved by the Ethics
Committee of the Ludwig-Maximillian-University (LMU) of
Munich. Our study complies with all relevant ethical regulations
and was conducted according to Good Clinical Practice (ICH-
GCP) and the principles of the Declaration of Helsinki. The
clinical trial is registered (ID DRKS00013217) at the German
Clinical Trials Register (DRKS).

In total, we considered spectra from 523 lung cancer patients,
411 prostate cancer patients, and nonsymptomatic references
pair-matched to each individual from each cancer entity. A
detailed breakdown of the cohorts is provided in Table S1 in the
Supporting Information. Information regarding the study
design, statistical matching, sample collection, sample handling,
FTIR measurements, and spectral preprocessing is detailed in
the previous study.” Machine learning analysis performed on the
experimental and simulated data is detailed in Section 4 in the
Supporting Information. In essence, an L2-regularized logistic
regression was used as a classification algorithm. Classifications
were assessed using the receiver operating characteristic (ROC)
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Figure 2. Validation of the model calibration procedure for the lung cancer detection case study. Spectral cohorts of individuals were simulated to
model the properties of measured experimental cohorts using the same sample sizes (n = 523 cases vs 523 controls). (A) Differential fingerprint,
defined as the difference between the mean of the case and control spectral features, for the experimental cohort (black) and the simulated cohorts
(gray) as averaged across 10 simulation repetitions. (B, C) Standard deviation of the control spectral features (B) and case spectral features (C) for the
experimental cohort (blue) and simulated cohorts (cyan) as averaged across 10 simulation repetitions. (D) ROC curve for binary case—control
classifications when training and testing on experimental samples (blue), training and testing on simulated samples (cyan), and training on simulated
samples and testing on experimental samples (gray). The AUCs are listed in the figure legend along with their standard deviations across the cross-
validation splits. Figure S2 in the Supporting Information shows consistent results with the prostate cancer application.

curve, and the area under the curve (AUC) was used as a experimental and simulated data (Figure 2D). An L2-regularized
summary metric of predictive performance. logistic regression classifier was used for the predictive modeling
to help ensure classifier robustness against noise (Sections 4 and
B RESULTS 11 in the Supporting Information for more details). For the
By applying our simulation model to a clinically relevant experimental data, model performance was estimated in a 10-
scenario, we studied the potential and limitations of detecting times repeated 10-fold cross-validation—totaling 100 folds. For
lung and prostate cancer in binary case—control settings. Using the simulated data sets, a 10-fold cross-validation was carried out
experimentally measured FTIR spectra, we validated that on each of the 10 simulated data sets—thereby, also totaling 100
comparable results were obtained between artificially generated folds. With this pipeline, we estimated mean ROC-AUCs of 0.88
cohorts and experimental cohorts. Next, we investigated how and 0.87 for the lung cancer classification with the experimental
classification performance was influenced by varying model data and the simulated data, respectively (Figure 2D, blue and
parameters that control the cohort size, measurement noise, cyan curves). The ROC-AUC values that we observed fall within
biologically variability, and molecular complexity. Our findings the standard deviation across the cross-validation folds,
from the lung cancer application are provided within the main validating that the degree of class separation was well modeled
text and figures. Figures relating to the prostate cancer conveyed for our simulated data following the descriptive calibration
consistent results with the lung cancer application and are thus procedure.
provided in Sections 6—9 in the Supporting Information. As an additional validation, we compared the predictive
Validation of Simulated Data. After performing the performance of a model trained exclusively on simulated data
calibration procedure described in the methods, we validated and tested on experimental data. To ensure that no experimental
that the simulation model was able to create cohorts that data used for testing contributed to the model training, we split
effectively captured the intrinsic properties of experimental the experimental data into 10 folds. For each fold, we held out an
cohorts for our lung cancer case study (Figure 2A—D). We experimental test set, fit a predictive model on simulated samples
simulated 10 data sets of case and control samples with the same calibrated on the remaining experimental samples, and tested
sample counts as our experimental cohorts. Each simulated the predictive model on the held-out set. As previously
cohort was created with a different set of generated random described, we created simulated data sets of the same cohort
numbers (i.e., a different random seed), thereby, minimizing the sizes as our experimental data and repeated the simulation 10
effects of random perturbations. Across the 10 created data sets, times, resulting in a total of 100 ROC-AUC estimates. With this
we calculated the difference between the mean spectrum of case approach, we still achieved a similar performance to what we
and control samples and their standard deviations across the expected from the experimental data estimates, with a mean
spectrum. The resulting statistical properties were then averaged ROC-AUC of 0.85 (Figure 2D, gray curve). When the machine
for the 10 simulated data sets and compared to the same learning model was trained on even larger sets of simulated data
properties of the experimental cohort. with n = 100,000 of balanced cases and controls, the
In this comparison, we observed a high degree of agreement in experimentally obtained ROC-AUC values can be fully
the statistical features of the spectra between simulated and recovered (Figure S6 in the Supporting Information). Taken
experimental data (Figure 2A—C). The differential fingerprint together, these results suggest that the proposed descriptive
retained its structure in simulation (Figure 2A), and the standard modeling approach is able to capture all relevant properties and
deviations around the mean spectrum were well modeled for features for the classification of the studied system.
case and control samples (Figure 2B,C). Since our simulated We repeated the above numerical experiment but with a more
cohorts were calibrated to follow the experimental cohort, it was simplistic model for generating the cancer cohort. Instead of
unsurprising to find such a high degree of similarity in these modeling cases based on experimental measurements, we
properties. introduced a single discriminant feature vector d to describe
Relating to our aim of studying the influence of noise factors them (eq 7 based on the experimentally obtained differential
on predictive modeling, we compared the classification fingerprints depicted in Figure 2A). Surprisingly, the model was
performance of detecting cancer cases from controls for both still able to reproduce the experimental results to a large extent
E https://doi.org/10.1021/acs.analchem.2c04711
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(Figure S8 in the Supporting Information). Although the
approach based on modeling the case measurements using
experimental case spectra (Figure 2A—D) better captured the
properties of the spectra, the more simplistic approach indicated
that most of the relevant changes between the case and control
state could be explained by a single vector.

Influence of Cohort Size. The simulation approach allows
for generating artificial cohorts in arbitrary counts, which
enabled us to carry out an investigation on the influence of
cohort size on predictive performance. We used the previously
calibrated parameters of the simulation model and tested out
different cohort sizes (Figure 3). For each cohort size tested, 100

ROC-AUC

—— FXP
s S|M

0 500 1000 1500 2000 2500 3000
Cohort size (n)

Figure 3. Effect of cohort size on lung cancer detection. Spectral
cohorts consisting of balanced cases and controls were simulated at
changing sample counts. The cross-validated ROC-AUC is plotted
against the cohort size for the simulated samples (cyan). For
comparison, sets of experimental samples were randomly selected
and cross-validated upon to model the effects of changing cohort sizes
with experimental observations (blue). The solid curves depict the
average scores along with their standard deviations in the shaded
region. Figure S3 in the Supporting Information shows consistent
results with the prostate cancer application.

artificial cohorts were generated and the ROC-AUC was again
determined in 10-fold cross-validation on each cohort size. In

addition, a similar investigation was carried out using the
experimental observations, where samples were randomly
selected in 100 different iterations, selecting a different set of
measurements in each iteration for each cohort size, and cross-
validated upon (10-fold).

We observed a similar dependence between the cohort size
and the performance of detecting lung cancer for simulated and
experimental data (Figure 3). This investigation revealed that
increasing the size of the simulated data sets beyond the number
of experimentally available data (n = 1046) only marginally
improved the classification performance and reduced the
relative standard deviation as the plateau of asymptotic
performance was reached. It was apparent, however, that the
classification performance significantly suffered when smaller
cohorts were used (e.g, n < 200) compared to using larger
cohorts (e.g., with n > 1000). Moreover, the standard deviation
became intolerably large with smaller sample sizes, making it
difficult to construct conclusive estimates when only limited
cohort sizes are available.

This result showed that the cohort sizes used were sufficiently
large, which is reflected by the well-known fact that the
predictive performance of a machine learning classifier reaches a
plateau above a certain cohort size.>® Furthermore, it served as
an additional validation that the simulation model was able to
reproduce the results obtained from experimental observations.

Influence of Biological Variability and Measurement
Noise. After demonstrating that the calibration procedure
generated artificial cohorts that captured the properties of our
experimental results, we examined the potential effects of
measurement noise and biological variability on the perform-
ance of detecting lung cancer (Figure 4). When describing the
simulation model, we considered the random coefficients f and
€, modeling the biological variability and measurement noise in
levels similar to that of the experimental observations. The
standard deviations of these two coefficients are tunable, thus
enabling the scaling of these levels noise factors seen within the
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Figure 4. Effect of biological variability and measurement noise on lung cancer detection. (A) Classification performance was measured by the mean

cross-validated ROC-AUC on multiple spectral cohorts simulated at changing levels of biological variability and measurement noise. The black “x

« »

marks the point of calibration where the simulated cohorts model the experimental levels of between-person biological variability and measurement

« »

noise. The red “x” marks an estimate for reduced biological variability in a longitudinal, self-referencing, scenario as estimated from previous work."*
(B) Slice of (A) when the measurement noise factor is held constant at the calibrated level and the biological variability factor is changing. (C) Slice of
(A) when the biological variability factor is held constant at the calibrated level and the measurement noise factor is changing. Figure S4 in the
Supporting Information shows consistent results with the prostate cancer application.

https://doi.org/10.1021/acs.analchem.2c04711
Anal. Chem. XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.2c04711/suppl_file/ac2c04711_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04711?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04711?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04711?fig=fig3&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.2c04711/suppl_file/ac2c04711_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04711?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04711?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04711?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04711?fig=fig4&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.2c04711/suppl_file/ac2c04711_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04711?fig=fig4&ref=pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.2c04711?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Analytical Chemistry

pubs.acs.org/ac

spectra and thereby simulating different experimental con-
ditions. We generated artificial cohorts considering varying
levels of these noise factors and examined their effects on
classification performance. For each level of measurement noise
and biological variability considered, we simulated 10 cohorts
and cross-validated (10-fold) on each simulated cohort—
averaging the ROC-AUC scores across the 100 total test data
splits.

Overall, we found that the dominating source of noise, which
masked away the signal separating the classes, was the level of
biological variability (Figure 4A). With no added biological
variability, the binary classifiers were able to distinguish the clear
signal of the diseases, achieving near-perfect to perfect ROC-
AUCs within the explored levels of measurement noise. With
increasing levels of biological noise, the disease signals were
increasingly masked away, leading to sharp declines in ROC-
AUCs down to the plateau of observing random chance models.
Our point of calibration fell within a region where minor changes
to the biological variability have significant effects on the
performance of distinguishing cases from controls (Figure 4B).

Previously, it was found that the level of within-person
biological variability in molecular fingerprints over a period of 6
months was near a factor of 2 less, on average, than the level of
between-person variability of individuals in groups.'* This
allowed us to estimate the potential classification performance of
detecting cancer in a personalized, longitudinal health-
monitoring scenario. By tuning our random coeflicient f to
model the level of within-person variability (i.e., f X 0.5), we
estimated that such a classification would yield a ROC-AUC of
0.98 for lung cancer detection (Figure 4A,B).

Compared to the effect of biological variability, varying the
level of measurement noise was found to have a substantially
smaller effect on the classification performance (Figure 4A,C).
Eliminating the modeled measurement noise (i.e., € X 0) yielded
an estimated ROC-AUC of 0.92. Nevertheless, varying both the
biological variability and measurement noise simultaneously
revealed that the effect of the measurement noise on the
retrieved ROC-AUC also depended on the level of biological
variability. For instance, when the level of biological variability
was highest, reducing the measurement noise resulted in
substantial classification performance gains (in terms of
AROC-AUC). However, when the biological variability was
lowest, measurement noise had little effect on the retrieved
ROC-AUC—with the classification performing with perfect
efficiency. Thus, advances in spectroscopic methods which
result in further reductions of measurement noise may be
particularly promising for problems with low classification
efficiencies (e.g., due to weak disease signatures).

Influence of Molecular Complexity. Within the proposed
simulation model, the biological variability of the molecularly
complex blood-based spectra was modeled according to two
aspects: the total strength of biological variability, determined by
the statistical variable f, and the structure of the underlying
biological variability as determined by the set of m unique and
independent calibration vectors b; of a given sample pool. Each
vector represents the absorbance spectrum combining all
molecular constituents in a given molecular sample, combining
all their respective concentrations. As previously described,
changing the number of independent vectors considered when
creating an artificial sample would mathematically correspond to
changing the number of unique molecular species creating the
full blood-serum spectrum.

To model this, we kept the mean measurement b for each
sample pool constant and randomly selected m different
experimental calibration vectors b; to create artificial cohorts
at varying values of m (Figure SA—C). Since b is held constant,
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Figure S. Influence of molecular complexity on lung cancer detection.
(A) Multiple spectral cohorts were simulated at changing levels of m
(i.e., the number of calibration vectors defining each molecular state)
and changing levels of biological variability (/). Cohorts were created
with the same cohort size as the experimental measurements and cross-
validated upon to estimate the ROC-AUC as a measure of prediction
performance. (B) Multiple data sets were simulated at changing levels
of m and changing cohort sizes (1) to investigate the effects of the
sample size on the trends observed in (A) at the highest level of
biological variability investigated. (C) Number of calibration vectors m
required to achieve a ROC-AUC > 0.99 at the cohort sizes investigated
in (B). Figure SS in the Supporting Information shows consistent
results with the prostate cancer application.

we assume that altering the molecular complexity has no direct
effect on the disease signal, but in fact, increasing complexity
serves to mask it away. To note as well, the case and control
cohort spectra are each based on a separate set of vectors, and
thus, the entire set of case and control spectra is based on 2 X m
independent vectors.

In the first numerical experiment, we kept the relative strength
of biological variability at the same level as previously calibrated,

1

utilizing the random coefhicient ﬂ(O, ﬁ) The measurement
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noise coefficient € was also kept at the calibrated level when
creating the simulated samples. Cohorts for lung cancer were
created with the same sample sizes as our experimental
measurements. This process was repeated 100 times, each
with a different set of m randomly selected experimental
measurements, and cross-validated (10-fold) on each simulated
data set. We observed that when the molecular complexity was
modeled with m < 20 independent biological calibration vectors
for each sample pool, perfect class separation can be achieved
with ROC-AUCs of 1.0 (Figure SA, cyan curve). Increasing the
molecular complexity of the spectra past this, using calibration
vectors that did not contribute to the cancer disease signal,
added a level of molecular complexity that reduced the
prediction confidence of the classification models.

This observation prompted the question of whether there
might be a more general relationship between molecular
complexity, biological variability, and the ability of infrared
fingerprinting to distinguish between two classes. Therefore, we
repeated the previous experiment, but with larger levels of
variability for f, representing the strength of the biological
variability. We found that perfect separation was possible for m
< 20, irrespective of the level of biological variability in our
explored domain (Figure SA, gray and black curves). From a
mathematical point of view, this suggests that at such a
threshold, the underlying system of equations to be solved is
over-determined and thus has a unique solution that a predictive
model is able to find.

Further investigations revealed that the threshold value for m,
for which perfect separation is still possible, can be increased
with increasing cohort size but only at an exponentially
decreasing rate (Figure SB,C). In other words, more individual
components could be detected at a higher level of sensitivity by
measuring exponentially more samples. However, this threshold
certainly depends on the correlation of the calibration vectors,
the spectral bandwidth, and resolution, and can vary depending
on the application.

We would like to note that the threshold values obtained here
can only be transferable under idealistic conditions. In particular,
the application of interest must not be tainted by any
measurement noise, and the signal of interest, as well as all
other molecules, must be of similar concentration. Nevertheless,
these results clearly reflect that the capacity of infrared molecular
fingerprinting of complex samples can be drastically increased—
if the number of components of the analyzed matrix in which the
spectral marker is embedded is significantly reduced below 100.

B DISCUSSION

Capturing biological phenotypes through molecular finger-
printing forms the basis for many innovative applications, such
as disease detection. Nevertheless, the full potential and
limitations of these approaches are not fully understood due
to the complex interplay of measurement noise, biological
variability, and the actual distinctive molecular pattern.

To investigate these effects, we systematically adjusted the
parameters of our validated in silico model. We found that
improved classification was achievable by decreasing the levels
of biological variability and measurement noise. Reducing
measurement noise promises to improve classification efficiency
by a few percentage points (in terms of ROC-AUC scores) and
can potentiallg be exploited with next-generation infrared
spectrometers.”” A greater advantage came from reducing
biological variability, which is more challenging to realize as it is
inherent to any biological setting—from a single gene’® to an

organismal level.'”'® A possible strategy here is populational
stratification, or grouping individuals into defined strata (e.g., by
age, body mass index, and lifestyle factors), to reduce the
biological variability within each stratum. Although widely
established in genomics,” it needs to be carefully controlled to
not lead to spurious associations. Furthermore, the concept of
longitudinal self-referencing could be incorporated in finger-
printing for disease diagnostics and health monitoring.*” The
within-person biological variability of blood-based infrared
fingerprints is near a factor of 2 lower than the between-person
variability when monitored over a span of 6 months.'* Using our
model, we estimated that this would improve the ROC-AUC
from 0.88 for group comparison to 0.98 for longitudinal self-
referencing when detecting lung cancer.

Further investigations showed that identifying spectral
patterns using infrared molecular fingerprinting may be
fundamentally limited by the molecular complexity of the
analyzed samples. By reducing the number of different
molecular species considered for generating the cohorts, perfect
class separation was achievable when less than 20 unique spectra
were used for each sample pool—regardless of the level of
biological variability. By increasing the cohort size, near-perfect
separation could be achieved even with increasing molecular
complexity—albeit, this requires exponentially larger cohort
sizes. This indicated that infrared fingerprinting of complex
biological samples (e.g, blood-based media) is only able to
unambiguously determine a certain number of independent
variables, or molecular species, within complex samples. The
actual number of detectable independent variables certainly
depends on measurement properties such as the spectral
bandwidth, spectral range, and the type of sample under
investigation. Such questions can be investigated with the
presented model but would exceed the scope of this study.
Considering our applications using blood-serum, we found that
reducing the chemical sample complexity (e.g., via chromatog-
raphy) could be a viable option to improve the classification
performance.

Critically seen, we initially developed our approach to
calculate realistic fingerprint spectra of blood serum by
considering the individual spectral contributions of the majority
of molecular species contained therein. Since this requires
information on individual molecular concentrations in blood for
different groups of the human population and also the use of a
large number of individual component spectra, with the majority
unavailable, we could not realize this approach. Instead, we
chose a descriptive approach that relies on measured spectra of
the molecularly complex samples from observational studies. We
have, however, shown that both approaches follow a similar
mathematical formulation. To assess whether they have similar
explanatory power, a direct comparison is necessary and which is
already ongoing. At the same time, we believe that the bottom-
up approach can facilitate the analysis of simpler systems, such as
pharmaceutical samples,™ to investigate the effects of factors
like molecular mixing and variance of molecular concentrations
introduced through manufacturing.

A disadvantage of the descriptive approach is that the best
agreement with experimental results is only achieved when
healthy and diseased sample pools were calibrated separately.
Choosing a simplified approach that describes the occurrence of
a disease by a single discriminant vector, but otherwise only
considers the biological variability of the healthy cohort, reduces
the agreement with the experimental results (Figure S8 in the
Supporting Information). Nevertheless, this approach has its
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advantages. It is well suited for exploratory analysis of any
fingerprinting settings and could help estimate to what extent a
change in a certain molecule (e.g., a studied biomarker) would
be detectable by fingerprinting. For such investigations, one
would only need to record the spectra of the target molecule
independently and then use the calibrated data from this work to
generate simulated spectra with and without contributions from
the target spectra.

In general, the core idea of the proposed in silico model can be
transferred to other molecular fingerprinting techniques, such as
Raman spectroscopy”” or nuclear magnetic resonance spectros-
copy,” and to other applications involving multiclass classi-
fications. Furthermore, the model can be applied to study the
proper applications of machine learning algorithms—from
investigating the effects of noise on hyperparameter tuning
(Section 11 in the Supporting Information) to how different
classification algorithms perform under different simulated
conditions. To facilitate the use of the model, we provide a
Python toolbox alongside executable scripts to reproduce and
extend the results of this study (Sections 2 and 3 in the
Supporting Information).

B CONCLUSIONS

In this study, we describe an in silico approach capable of
modeling molecular fingerprints of complex biological systems.
We calibrated our model using experimentally measured
infrared spectra of blood sera and applied it to the detection
of lung and prostate cancer. Excellent agreement between the
statistical properties and classification results of simulated and
experimental data was achieved for both applications. The
validity of the approach was further supported by the finding that
machine learning models trained on simulated data and tested
on experimentally measured data delivered comparable results.
We demonstrated that the newly developed model enables
investigations of the potential and limitations of the molecular
fingerprinting framework and that it can serve as a platform for
exposing opportunities to advance molecular fingerprinting
applications.
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